

VLXE BLEND[®] Version 8.0

What's new?

Version 8 is the 2015 major release of VLXE Blend. The focus of this release is user experience where the user interface inside Excel is further simplified.

VLXE BLEND® Version 8.0

Introduction

Version 8 is the 2015 major release of VLXE Blend. The focus of this release is user experience where the user interface inside Excel is further simplified. Arguments to Excel functions that are often the same in many calculations either can now be store in a central location or omitted from the calculation.

The oil and gas module have been removed due to VLXE now focusing entirely on the polymer and chemical industry. Researchers in the oil and gas industry can still take advantage of VLXE Blend. However, they no longer have direct access to common calculations like GOR and other calculations only used within the oil and gas industry. More properties can now be obtained from VLXE Blend including internal energy and Helmholtz energy. The user can also obtain both residual and ideal property values. A new function "PropertyOfMixing" has been added that lets the user calculate a complete range of mixing properties.

The speed have been improved on average with about 10% and for phase envelope with an average of 20%.

Breaking changes

Excess enthalpy function removed

The function: "ExcessEnthalpy" has been removed and replaced by the general function: "PropertyOfMixing".

The new function let the user calculate a complete range of mixing properties including Excess Enthalpy.

Chemical potential now complete

The chemical potential is now complete and include the full ideal gas term. This means that the user can sum the product of molenumbers times the chemialpotential and obtain the Gibbs Energy. Units of chemical potential is now "J/mole".

Oil and gas removed

This module has been in VLXE Blend for some years but has not been used much. It include only calculations unique to the oil and gas industry and is therefore removed.

Improvements

Project sheet

Version 15 of the project is new. It now has a new color scheme that is more in line with the two other colors used in VLXE Blend.

Removed items

It has been updated so unused parameters are removed and one new introduced. The removed parameters are: "Association Kappa" and "Association Epsilon" These two matrix's allowed the user to overwrite the internal calculation of the same matrix. It found very little use and has been removed. The use of the two matrix's were controlled with the "Association Matrix" input that has also been removed.

Added items

New parameter is: "Standard State Gibbs Energy". It is taken from DIPPR and is used to calculate the complete entropy including the entropy of formation.

Units are now stored in the project sheet in cell: "C3". This allows the user to store units used in a central location and avoid using the "Units" argument to all function calls.

Sheet version	Units	Number of solvents	Number of polymers	Equation of state	Solvents: Ideal gas Cp
1	5 C(In, Massfraction); C(Out, Ma	2	1	PC-SAFT	DIPPR
7					
Solvent Index	Name	VLXE DB. index	DDBST DB. index	DIPPR DB. index	CAS Number
	1 n-HEXANE	9	89	11	110-54-3
	2 ETHYLENE	127	1053	201	
Solvent Index	Name	m/M [mol/g]	sigma (1) [A]	sigma (2) [A]	sigma (3) [Kelvin^-1]
	1 n-HEXANE	0,03548	3,7983	0	0
	2 ETHYLENE	0,0567914	3,445	0	0
Solvent Index	Name	Enthalpy of Formation for Ide	Standard State Gibbs Energy	Ideal gas Cp: C(1) [kJ/(kg Kelvin)]	Ideal gas Cp: C(2)
	1 n-HEXANE	-1937,212679	-0,769825621	1,21148319	4,088175553
	2 ETHYLENE	1871,80339	0	1,1899	3,3789
Polymer Index	Name	Block count	Pseudo count	VLXE DB. index	DDBST DB. index
	1 HDPE	1	7	1	4
Polymer Index	Polymer Name	Block index	Block name	Monomer name [-]	Monomer molar mass [g/mol]
	1 HDPE	1	HDPE	Ethylene	28,054
Polymer Index	Polymer Name	Block index	Block name	c: Crystalline fraction [-]	Enthalpy of melting (Hu) [J/mol]
	1 HDPE	1	HDPE	0	8220
Polymer Index	Polymer Name	Block index	Block name	Heat of formation [kJ/kg]	Standard State Gibbs Energy of Fo
	1 HDPE	1	HDPE	-1613,2549	0
					7
Kij (a) [-]	n-HEXANE	ETHYLENE	HDPE		
n-HEXANE					
ETHYLENE	0				
HDPE	0	0			

 Units are now stored in the project sheet in cell: "C3". This allows the user to store units used in a central location + avoid using the "Units" argument to all function calls.

Wizards

New mixture

PC-SAFT is now default for all new mixtures. Other equations of state still there but are hidden behind an "Advanced" setting.

VLXE Blend databases - Selec	t a New System		
System		Equation of State	Nevt
Standard		● PC-SAFT	INEXC
	7	Ideal Gas Cp Expression (Standard)	
O Solvent / Polymer		O Polynomial	
O Solvent / coPolymer		OIPPR	
O Polymer blend			
C coPolymer blend		Advanced	
l		View Extra	
Database Connection D	atabase Format	Name of New Project Sheet	Cancel
Local SQ	LCE	VLXE - Project	

Functions

Arguments

n-HEXANE	ETHYLENE	HDPE [Ma	Temperat	Pressure	[FlashType	e Output	Compone	e Units	Project sh	eet	n-HEXAN	E ETHYLEN	E HDPE	Temperat	Pressure	FlashType	Output	Project sh	e
0,78	0,02	0,2	140	15	Auto	Fixed 2D	All	C(In,Mass	PCSAFTv1	2	0,7	8 0,0	2 0,2	140	15	Auto	Detailed	PCSAFTv1	5
Property	System	Feed	Phase 1	Phase 2	Phase 3	Phase 4					Property	System	Phase 1	Phase 2	Phase 3	Phase 4			
Pressure [15										Pressure	[1	5						
Temperat	140										Tempera	it 14	D						
Compone			•				\				Compon	e							
n-HEXANE	0,78	0,78	0,749033	0,974959	0,726376	5 0					n-HEXAN	IE 0,7	8 0,749014	0,974961	0,726403	0			
ETHYLENE	0,02	0,02	0,018604	0,024508	3 0,273624	ι O					ETHYLEN	E 0,0	2 0,018602	0,024506	0,273597	′ O			
HDPE [Ma	0,2	0,2	0,232364	0,000533	3 1E-75	5 0					HDPE [M	a: 0,2	2 0,232384	0,000533	1E-75	0			
Phase Fra			0,824429	0,171296	5 0,004275	5 0					Phase Fr	ai		0,171384	0,004283	0			
Phase Fra			0,860405	0,137298	3 0,002297	7 0					Phase Fr	ai		0,137369	0,002301	. 0			
Compress	0,081907	0,078348	0,080588	0,068797	7 0,861482	2 0					Compres	s 0,08191	2 0,080589	0,068796	0,861473	0			
Density [g	0,545769	0,570559	0,578905	0,520812	2 0,027877	7 0					Density [g 0,54572	5 0,578908	0,520808	0,027878	0			
Molar Vol	187.5745	179.4245	184 5546	157,5509	5 1972.873	0					Molar Vo	187.585	9 184 5557	157.549	1972.853	0			

Units

"Units" argument is now optional. Starting with project sheet 15 units are included in the project sheet. The user can therefore omit the "Units" argument. If needed it can still be used.

Components

The "Components" arguments is now optional. Default value is taken to be "All".

Output

New output format: "Detailed". In the previous versions of VLXE Blend the user could chose a fixed output format: "Fixed 2D". It would always include the feed and system phase. Often this information is not wanted and when using the new fixed format output: "Detailed" it is not included. This makes the output smaller. Bubble and dew point calculations no longer include the "System" and "feed" phase. It was always the same as the starting phase and can therefore be removed.

Properties

Changes

More properties can now be obtained: Internal energy and Helmholtz energy. A full range of residual end ideal properties can also now be obtained

A new button: "Advanced" has been added. It allows the user to show/hide new extra residual and ideal gas properties as seen here.

New Properties

Changes

VLXE Blend now gives the user access to more properties. This includes Gibbs Enerby, Helmholtz Energy and Internal Energy. In addition the chemcial potential has been changes to they match the property values. This means that the full ideal gas term is included and that the sum of molenumbers times the chemical potential at fixed temperature and pressure will give the Gibbs Energy.

n-HEXANE	ETHYLENE	HDPE	Temperat	Pressure	VolumeT	Output	Project sh	Volume (S)	Enthalpy (S	Entropy (S	GibbsEnerg	nternalEner	HelmholtzEn
0,78	0,02	0,2	25	25	Auto	V(S),H(S),	PCSAFTv1	151,16309	-219963,2	-615,935	-36322,26	-220341,13	-36700,1676
n-HEXANE	ETHYLENE	HDPE	Temperat	Pressure	Updatedr	VolumeT	Output	UseCompre	Project she	et			
0,78	0,02	0,2	25	25	No	Auto	Detailed	No	PCSAFTv15				
G	Temperat	Pressure	Volume										
[1]	[Celsius]	[Bar]	[cm3/mol								-		
-36322,2599	25	25	151,1631										
Name:	ChemPot	d(ChemP	d(ChemPc،	d(ChemPo									
1: n-HEXANE	-3945,78	652,2404	13,20453	0									
2: ETHYLENE	55687,11	41,61514	6,613567	0									
3: HDPE(0)	-3,1E+07	7173,583	2027,744	0									
4: HDPE(1)	-4,6E+07	10652,86	2999,746	0									
5: HDPE(2)	-6,5E+07	15011,81	4217,676	0									
6: HDPE(3)	-9E+07	20863,09	5857,197	0									
7: HDPE(4)	-1,2E+08	28876,05	8105,683	0									
8: HDPE(5)	-1,8E+08	40720,54	11431,57	0									
9: HDPE(6)	-2,6E+08	60067,2	16865,41	0									

Distribution

Changes

All VLXE Blend PVT calculation functions has a argument that lets the give a distribution. This is used for example when linking flash calculations. The output from the "Distribution" calculation did not follow the format used by this argument. This has now been changes. This was done by reversing the two first output columns.

Model [-] Size [-]	MolarmassM	MolarmassN	Mn [g/mo	Mw [g/mc M	Иz [g/mol]	Model [-] Size MolarmassM MolarmassM Mn Mw Mz
Gamma 💄	25 100	100000000	10000	25000	50000	Gamma 25 100 10000000 10000 25000 50
Function: PDF						Function:
Type: Optimize	ed User value:	Calc. value:	Error [%]			Type: Optimizec User value: Calc. value: Error [%]
Mn [g/mo Yes	10000	9999,99973	-2,7E-06			Mn [g/mo Yes 10000 9999,99973 -2,7E-06
Mw [g/mc Yes	25000	25000,0018	7,21E-06			Mw [g/mc Yes 25000 25000,0018 7,21E-06
Mz [g/molYes	50000	49999,9977	-4,5E-06			Mz [g/molYes 50000 49999,9977 -4,5E-06
Mw/Mn [-	2,5	2,50000025				Mw/Mn [- 2,5 2,50000025
Mz/Mw [-]	2	1,99999977				Mz/Mw [-] 2 1,99999977
	A					
Count 🦰	25					Count 25
Number Molar M	ass Ln(M) [Ln(g/r	Mass Fractic				Number Ln(M) [Ln(Molar Mass [Mass Fractio
1 1	100 4,605170186	1,7226E-05				1 4,60517 100 1,7226E-05
2 177,827	794 5,180816459	8,4456E-05				2 5,180816 177,827941 8,4456E-05
3 316,227	777 5,756462732	0,00038377				3 5,756463 316,227766 0,00038377
4 562,341	133 6,332109006	0,00158924				4 6,332109 562,341325 0,00158924
5 10	000 6,907755279	0,00587524				5 6,907755 1000 0,00587524
6 1778,27	794 7,483401552	0,01890833				6 7,483402 1778,27941 0,01890833
7 3162,27	777 8,059047825	0,05137067				7 8,059048 3162,27766 0,05137067

Critical Point

Changes

The putput format used for a critical point calculation was not optimal. It would give information for a range of phases even that they are equal at the critical point. Plus it did not take into account the precens of several critical point at given conditions.

The new format gives one phase information for each critical point found as seen on the right side.

EXANE [Massfractior ETHYLENE HDPE [Ma Output Compone Units Project sheet	n-HEXANE ETHYLENE HDPE Output Project s
0,333333333 0,333333 0,333333 Fixed 2D All C(In,Mass PCSAFTv12	0,333333333 0,33333333 0,333333333 Detailed PCSAFTV
perty System Feed Phase 1 Phase	Property Critical Point 1/2 Critical Point 2/2
ssure [Bar] 2124,419 🗨	Pressure [Bur] 2124,418791 97,29767788
nperature [Celsius] 28,3038	Temperature [Celsius] 28,3037952 1154,014372
nponents	Components
EXANE [Massfractior 0,333333 0,333333 0,333333 0,333333	n-HEXANE [Massfraction] 0,333333333
YLENE [Massfraction 0,333333 0,333333 0,333333 0,333333	ETHYLENE [Massfraction] 0,333333333
PE [Massfraction] 0,333333 0,333333 0,333333 0,333333	HDPE [Massfraction] 0,333333333
se Fraction [Mole] 0,5 0,5	Phase Fraction [Mole]
se Fraction [Weight] 0,5 0,5	Phase Fraction [Weight]
npressibility [-] 7,240022 7,240022 7,240022 7,240022	Compressibility [-] 7,240021656 1,05296611
sity [g/cm^3] 0,742957 0,742957 0,742957 0,742957	Density [g/cm^3] 0,74295671 0,04941947
lar Volume [cm^3/m 85,41952 85,41952 85,41952 85,41952	Molar Volume [cm^3/mol] 85,41952396 1284,170158
halpy [kJ/Kg] -667,11 -667,11 -667,11 -667,11	Enthalpy [kJ/Kg] -667,109959 3160,192824
ropy [kJ/(Kg Kelvin)] -1,44821 -1,44821 -1,44821 -1,44821	Entropy [kJ/(Kg Kelvin)] -3,613166817 1,887856366
kJ/(Kg Kelvin)] 2,183715 2,183715 2,183715 2,183715	Cp [kJ/(Kg Kelvin)] 2,183711892 4,93790181
kJ/(Kg Kelvin)] 1,900584 1,900584 1,900584 1,900584	Cv [kJ/(Kg Kelvin)] 1,900580897 4,782322518
oeffient [Kelvin/Bar] -0,05013 -0,05013 -0,05013	JTCoeffient [Kelvin/Bar] -0,050127818 0,01283699
ocity of Sound [m/s] 1677,093 1677,093 1677,093	Velocity of Sound [m/s] 1677,092829 464,2680069
lecularWeight [g/mo 63,46301 63,46301 63,46301 63,46301	MolecularWeight [g/mol] 63,4630085
(HDPE) [g/mol] 47619,27 47619,27 47619,27 47619,27	Mn (HDPE) [g/mol] 47619,26789
(HDPE) [g/mol] 51838,58 51838,58 51838,58 51838,58	Mw (HDPE) [g/mol] 51838,58361
(HDPE) [g/mol] 56257,52 56257,52 56257,52 56257,52	Mz (HDPE) [g/mol] 56257,51517
PE HDPE HDPE HDPE HDPE	HDPE HDPE
17300 0,00498 0,00498 0,00498 0,00498	17300 0,00497995
25600 0,03067 0,03067 0,03067 0,03067	25600 0,030669693
36000 0,239018 0,239018 0,239018 0,239018	36000 0,23901761
50000 0,455145 0,455145 0,455145 0,455145	50000 0,455145449
69200 0,239018 0,239018 0,239018 0,239018	69200 0,23901761
97600 0,03067 0,03067 0,03067 0,03067	97600 0,030669693
144000 0,0005 0,0005 0,0005 0,0005	144000 0,000499995

Solutions worldwide...

...for Chevron, ConocoPhillips, Dow Chemicals, Exxon-Mobil, Merck, Nova Chemicals, Sasol, Statoil and others.

"With references like Chevron, ConocoPhillips, Dow Chemicals, ExxonMobil, Merck, Nova Chemicals, Sasol, Statoil and world leading universities VLXE has become a preferred supplier for the industri."

Dr. Torben Laursen, CEO & Founder

0101

VLXE ApS Nordre Frihavnsgade 13A, 2, tv 2100 Copenhagen Ø Denmark

If you are interested and would like more information, please contact us on:

Cell phone e-mail Homepage Skype: +45 31 41 01 19 tl@vlxe.com www.vlxe.com vlxe.lnc

